Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 4. Bivariate Distributions

§ 4.1 Bivariate Distributions of the Discrete Type
§ 4.2 The Correlation Coefficient
§ 4.3 Conditional Distributions
§ 4.4 Bivariate Distributions of the Continuous Type
§ 4.5 The Bivariate Normal Distribution

Chapter 4. Bivariate Distributions

§ 4.1 Bivariate Distributions of the Discrete Type
§ 4.2 The Correlation Coefficient
§ 4.3 Conditional Distributions
§ 4.4 Bivariate Distributions of the Continuous Type
§ 4.5 The Bivariate Normal Distribution

Definition 4.4-1 The joint probability density function (joint pdf) of two continuous-type random variables is an integrable function $f(x, y)$ with the following properties:
(a) $f(x, y) \geq 0$, where $f(x, y)=0$ only when (x, y) is not in the support (space) S of X and Y.
(b) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.
(c) $\left.\mathbb{P}[(X, Y) \in A]=\iint_{A} f(x, y)\right\rangle d x d y$ where $\{(X, Y) \in A\}$ is the event defined in the plane.

Example 4.4-1

The joint pdf of a bivariate r.v. (X, Y) is given by

$$
f(x, y)= \begin{cases}k x y, & \text { if } 0<x<1,0<y<1, \\ 0, & \text { otherwise } .\end{cases}
$$

where k is a constant.
(a) Find the value of k.

Example 4.4-1

The joint pdf of a bivariate r.v. (X, Y) is given by

$$
f(x, y)= \begin{cases}k x y, & \text { if } 0<x<1,0<y<1, \\ 0, & \text { otherwise } .\end{cases}
$$

where k is a constant.
(b) Are X and Y independent?

Example 4.4-1

The joint pdf of a bivariate r.v. (X, Y) is given by

$$
f(x, y)= \begin{cases}k x y, & \text { if } 0<x<1,0<y<1, \\ 0, & \text { otherwise } .\end{cases}
$$

where k is a constant.
(c) Find $\mathbb{P}(X+Y<1)$

Example 4.4-1

The joint pdf of a bivariate r.v. (X, Y) is given by

$$
f(x, y)= \begin{cases}k x y, & \text { if } 0<x<1,0<y<1, \\ 0, & \text { otherwise } .\end{cases}
$$

where k is a constant.
(d) Compute $\mu_{X} ; \mu_{Y} ; \sigma_{X}^{2} ; \sigma_{Y}^{2}$.

Example 4.4-1

The joint pdf of a bivariate r.v. (X, Y) is given by

$$
f(x, y)= \begin{cases}k x y, & \text { if } 0<x<1,0<y<1 \\ 0, & \text { otherwise }\end{cases}
$$

where k is a constant.
(a) Find the value of k.
(b) Are X and Y independent?
(c) Find $\mathbb{P}(X+Y<1)$
(d) Compute $\mu_{X} ; \mu_{Y} ; \sigma_{X}^{2} ; \sigma_{Y}^{2}$.

Ans.
(a) $k=4$
(b) they are independent.
(c) $1 / 6$.

Definition 4.4-2 If (X, Y) is a continuous bivariate r.v. with joint pdf $f(x, y)$, then the conditional pdf of X, given that $Y=y$, is defined by

$$
g(x \mid y)=\frac{f(x, y)}{f_{2}(y)}, \quad f_{2}(y)>0
$$

Similarly, the conditional pdf of Y, given that $X=x$, is defined by

$$
h(y \mid x)=\frac{f(x, y)}{f_{1}(x)}, \quad f_{1}(x)>0
$$

Definition 4.4-3 If (X, Y) is a continuous bivariate r.v. with joint pdf $f(x, y)$, the conditional mean of Y, given that $X=x$ is defined by

$$
\mu_{Y \mid x}=\mathbb{E}(Y \mid x)=\int_{-\infty}^{\infty} y h(y \mid x) d y
$$

The conditional variance of Y, given that $X=x$, is defined by

$$
\sigma_{Y \mid x}^{2}=\operatorname{Var}(Y \mid x)=\mathbb{E}\left[\left(Y-\mu_{Y \mid x}\right)^{2} \mid x\right]=\int_{-\infty}^{\infty}\left(y-\mu_{Y \mid x}\right)^{2} h(y \mid x) d y
$$

which can be reduced to

$$
\operatorname{Var}(Y \mid x)=\mathbb{E}\left(Y^{2} \mid x\right)-\left(\mu_{Y \mid x}\right)^{2}
$$

Example 4.4-2 Let $f(x, y)=1 / 40,0 \leq x \leq 10,10-x \leq y \leq 14-x$, be the joint pdf of X and Y.
(a) Find $f_{1}(x)$, the marginal pdf of X.

Example 4.4-2 Let $f(x, y)=1 / 40,0 \leq x \leq 10,10-x \leq y \leq 14-x$, be the joint pdf of X and Y.
(b) Determine $h(y \mid x)$, the conditional pdf of Y, given that $X=x$.

Example 4.4-2 Let $f(x, y)=1 / 40,0 \leq x \leq 10,10-x \leq y \leq 14-x$, be the joint pdf of X and Y.
(c) Calculate $\mathbb{E}(Y \mid x)$, the conditional mean of Y, given that $X=x$.

Example 4.4-2 Let $f(x, y)=1 / 40,0 \leq x \leq 10,10-x \leq y \leq 14-x$, be the joint pdf of X and Y.
(d) Find $\mathbb{P}(9 \leq Y \leq 11 \mid X=2)$.

Example 4.4-2 Let $f(x, y)=1 / 40,0 \leq x \leq 10,10-x \leq y \leq 14-x$, be the joint pdf of X and Y.
(a) Find $f_{1}(X)$, the marginal pdf of X.
(b) Determine $h(y \mid x)$, the conditional pdf of Y, given that $X=x$.
(c) Calculate $\mathbb{E}(Y \mid x)$, the conditional mean of Y, given that $X=x$.
(d) Find $\mathbb{P}(9 \leq Y \leq 11 \mid X=2)$.

Ans.
(a) $f_{1}(x)=1 / 10,0 \leq x \leq 10$;
(b) $h(y \mid x)=1 / 4,10-x \leq y \leq 14-x$ for $0 \leq x \leq 10$;
(c) $\mathbb{E}(Y \mid x)=12-x$.

